
Package ‘fort’
September 11, 2023

Type Package

Title Fast Orthogonal Random Transforms

Version 0.0.1

Description Provides convenient access to fast, structured, random linear
transforms implemented in C++ (via 'Rcpp') that are (at least
approximately) orthogonal or semi-orthogonal, and are often much faster
than matrix multiplication. Useful for algorithms that require or
benefit from uncorrelated random projections, such as fast dimensionality
reduction (e.g., Johnson-Lindenstrauss transform) or kernel approximation
(e.g., random kitchen sinks) methods.

License MIT + file LICENSE

Imports MASS, R6, Rcpp (>= 1.0.10)

LinkingTo Rcpp, RcppArmadillo

Encoding UTF-8

RoxygenNote 7.2.3

Roxygen list(markdown = TRUE)

Author Tomé Silva [cre, aut] (<https://orcid.org/0000-0002-9434-8686>)

Maintainer Tomé Silva <tome@tomesilva.com>

URL https://github.com/tomessilva/fort, https://tomessilva.github.io/fort/

BugReports https://github.com/tomessilva/fort/issues

Suggests knitr,
rmarkdown,
testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

R topics documented:
as.matrix.FastTransform . 2
determinant.FastTransform . 3
dim.FastTransform . 3
FastTransform . 4
FastTransformFFT1 . 8
FastTransformFFT2 . 10

1

https://orcid.org/0000-0002-9434-8686
https://github.com/tomessilva/fort
https://tomessilva.github.io/fort/
https://github.com/tomessilva/fort/issues

2 as.matrix.FastTransform

fort . 12
solve.FastTransform . 14
summary.FastTransform . 15
t.FastTransform . 16
%*%.FastTransform . 16
%***% . 17

Index 18

as.matrix.FastTransform

Convert fast transform to matrix

Description

Converts a fast transform created by fort() to the equivalent matrix form.

Usage

S3 method for class 'FastTransform'
as.matrix(x, ...)

Arguments

x An object of class FastTransform, created using fort().

... Extra parameters (ignored).

Value

A matrix object equivalent to x.

See Also

fort()

Examples

fast_transform <- fort(4, 15)
slow_transform <- as.matrix(fast_transform)
fast_result <- fast_transform %*% diag(4)
slow_result <- slow_transform %*% diag(4)
norm(fast_result - slow_result) # should be small

determinant.FastTransform 3

determinant.FastTransform

Calculate the Determinant of a Transform

Description

det calculates the determinant of a FastTransform object. determinant returns separately the
modulus of the determinant, optionally (by default) on the logarithm scale, and the sign of the
determinant. If the input transform (x) is not square, the function will fail with an error.

Usage

S3 method for class 'FastTransform'
determinant(x, logarithm = TRUE, ...)

Arguments

x Object of FastTransform type with dim_in == dim_out.

logarithm Logical. if TRUE (default) return the logarithm of the modulus of the determi-
nant.

... Extra parameters (ignored).

Value

For det, the determinant of x. For determinant, the same output format as determinant.matrix().

See Also

fort()

Examples

det(fort(16)) # either 1 or -1
determinant(fort(16))

dim.FastTransform Dimensions of fast transform

Description

Retrieves the dimensions of a fast transform created by fort() (i.e., the number of rows and
columns of an equivalent matrix). It returns the same value that one would get from dim(as.matrix()),
but much more efficiently.

Usage

S3 method for class 'FastTransform'
dim(x)

4 FastTransform

Arguments

x An object of class FastTransform, created using fort().

Value

A vector of length 2 containing the dimensions of the fast transform (i.e., number of rows and
number of columns, in this order).

See Also

fort()

Examples

dim(fort(3, 17)) # should return c(17,3)
dim(t(fort(3, 17))) # should return c(3,17)

FastTransform FastTransform class

Description

General specification of the type of objects generated by fort(), which correspond to structured
linear transforms. Useful objects of this class must be also part of a subclass which extends this
one with a specific implementation of a structured linear transform (e.g., FastTransformFFT1 or
FastTransformFFT2).

Details

It is generally not recommended that the fields and methods described here are used directly, un-
less you have some specific reason (e.g., require low-level access to objects or want to use pipe
operators). Instead, you should use fort() and the typical S3 methods for matrices, such as
%*%.FastTransform and solve.FastTransform.

Public fields

inverse Logical. Indicates whether the object currently represents a forward or inverse transform.

invertible Logical. Indicates whether the inverse transform can also be expressed as a FastTransform
object.

dim_in Dimensionality of the input for the forward transform.

dim_out Dimensionality of the output for the forward transform.

blocksize Dimensionality of the internal transformation (always a power of 2).

fwd_par List of parameters used in the forward transform.

fwd_mtrx Cached matrix representation of the forward transform.

rev_par List of parameters used in the inverse transform.

rev_mtrx Cached matrix representation of the inverse transform.

fort_type String indicating the type of structured transform being used.

cache_matrix Logical. Indicates whether to cache calculated matrices or not (default is TRUE).

logdet List with cached determinants of the forward and inverse transforms

FastTransform 5

Methods

Public methods:
• FastTransform$fwd_eval()

• FastTransform$rev_eval()

• FastTransform$calculate_rev_par()

• FastTransform$new()

• FastTransform$evaluate()

• FastTransform$get_ncol()

• FastTransform$get_nrow()

• FastTransform$get_dim()

• FastTransform$get_n_par()

• FastTransform$get_inverse()

• FastTransform$get_transpose()

• FastTransform$get_logdet()

• FastTransform$get_norm()

• FastTransform$get_norm_margin()

• FastTransform$as_matrix()

• FastTransform$print()

• FastTransform$summary()

• FastTransform$clone()

Method fwd_eval(): Function that performs the forward transform. Do not call this directly
unless you know what you are doing: use the FastTransform$evaluate() method instead.

Usage:
FastTransform$fwd_eval(x)

Arguments:
x Input matrix of the correct dimensionality

Returns: A matrix with the same number of columns as x.

Method rev_eval(): Function that performs the inverse transform. Do not call this directly
unless you know what you are doing: use the FastTransform$evaluate() method instead.

Usage:
FastTransform$rev_eval(x)

Arguments:
x Input matrix of the correct dimensionality

Returns: A matrix with the same number of columns as x.

Method calculate_rev_par(): Function that calculates and caches the parameters for the
inverse transform. Do not call this directly unless you know what you are doing. If you need the
inverse transform, use the FastTransform$get_inverse() method instead.

Usage:
FastTransform$calculate_rev_par()

Method new(): Raw object creation function. Note that calling this function does not result in a
useful object. Instead, you should call the fort() function.

Usage:

6 FastTransform

FastTransform$new(dim_in, dim_out, blocksize)

Arguments:
dim_in Dimensionality of the input for the forward transform.
dim_out Dimensionality of the output for the forward transform.
blocksize Dimensionality of the internal transformation (must be a power of 2).

Returns: A matrix with the same number of columns as x.

Method evaluate(): Evaluates the result of applying the transform represented by this object
on an input matrix x. It is important that the provided matrix has compatible dimensionality since
no input validation is performed. This method is compatible with the use of pipe operators (e.g.,
|> or magrittr’s %>% and %<>% pipe operators).

Usage:
FastTransform$evaluate(x)

Arguments:
x Input matrix with correct dimensionality.

Returns: A matrix with the same number of columns as x.

Examples:
x <- fort(4) # random transform
y <- diag(4) # data to transform
x %*% y # y transformed by x
y |> x$evaluate() # same as previous line

Method get_ncol(): Returns the number of columns of the linear transform represented by this
object.

Usage:
FastTransform$get_ncol()

Returns: A numeric value.

Method get_nrow(): Returns the number of rows of the linear transform represented by this
object.

Usage:
FastTransform$get_nrow()

Returns: A numeric value.

Method get_dim(): Returns the dimensions of the linear transform represented by this object.

Usage:
FastTransform$get_dim()

Returns: A numeric vector with length 2.

Method get_n_par(): Returns the number of parameters required to represent the linear trans-
form represented by this object.

Usage:
FastTransform$get_n_par()

Returns: A numeric value.

Method get_inverse(): Returns a new FastTransform object that represents the inverse trans-
form of the transform represented by this object.

FastTransform 7

Usage:
FastTransform$get_inverse()

Returns: A new object of type FastTransform.

Method get_transpose(): Returns either a FastTransform object that represents the transpose
of the transform represented by this object (if the value of the invertible field is TRUE), or an
equivalent matrix.

Usage:
FastTransform$get_transpose()

Returns: Either an new object of type FastTransform or a matrix.

Method get_logdet(): Returns information on the determinant of the transform represented
by this object. Fails if dim_in != dim_out. The modulus of the determinant is provided in log
scale.

Usage:
FastTransform$get_logdet()

Returns: The same type of object returned by determinant.matrix.

Method get_norm(): Returns norm of the matrix equivalent to the linear transform represented
by this object.

Usage:
FastTransform$get_norm(type = "o")

Arguments:
type String indicating the type of matrix norm to calculate, using the same convention as

base::norm (default is "o", which corresponds to the maximum absolute column sum).

Returns: A numeric value.

Method get_norm_margin(): Returns norms of the rows (or columns) or the matrix equivalent
to the linear transform represented by this object.

Usage:
FastTransform$get_norm_margin(type = "2", by = 1)

Arguments:
type String indicating the type of matrix norm to calculate, using a convention compatible with

base::norm (default is "2", which corresponds to the Euclidian norm; use "o" for L1 norm,
"m" for Inf norm).

by The norms of the rows are calculated by default (by = 1). To calculate the norms of columns
instead, use by = 2.

Returns: A vector of numeric values.

Method as_matrix(): Returns the matrix equivalent to the transform represented by this object.

Usage:
FastTransform$as_matrix()

Returns: A matrix.

Method print(): Prints terse information about the object.

Usage:
FastTransform$print()

8 FastTransformFFT1

Returns: The object itself (invisibly).

Method summary(): Prints verbose information about the object.

Usage:
FastTransform$summary()

Returns: The object itself (invisibly).

Method clone(): The objects of this class are cloneable with this method.

Usage:
FastTransform$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

• fort() and fort-package, for more detailed information

• FastTransformFFT1 and FastTransformFFT2, for specific FastTransform subclasses

Examples

--
Method `FastTransform$evaluate`
--

x <- fort(4) # random transform
y <- diag(4) # data to transform
x %*% y # y transformed by x
y |> x$evaluate() # same as previous line

FastTransformFFT1 FastTransformFFT1 subclass

Description

FastTransformFFT1 subclass

FastTransformFFT1 subclass

Details

A specific implementation of a structured fast transform. Inherits from FastTransform.

In particular, the fft1 type applies the following set of operations to each input (column) vector:

1. Permute/expand (P1) rows and pack them into a complex vector x;

2. Apply a y = D2FD1x linear transform, where F represents a complex FFT, and Di represent
diagonal matrices of random unitary complex values;

3. Unpack complex vector y to real vector and permute/contract (P2) rows.

FastTransformFFT1 9

Note that this transform will be orthonormal only when dim_in = dim_out = blocksize (in which
case, both P1 and P2 are permutations).

Otherwise, when dim_in < blocksize, P1 represents an expansion (rather than a permutation), and
when dim_out < blocksize, P2 represents a contraction/decimation (rather than a permutation).
When both of these conditions are true, the resulting transform will not be exactly orthogonal or
semi-orthogonal, but the rows and columns of the transform are still going to be generally uncorre-
lated.

It is not recommended that the methods described below are called directly. Instead, use the meth-
ods described in the fort() documentation, if possible, unless you positively need low-level access
(e.g., to speed up computation on pre-validated inputs).

Super class

fort::FastTransform -> FastTransformFFT1

Methods

Public methods:
• FastTransformFFT1$new()

• FastTransformFFT1$fwd_eval()

• FastTransformFFT1$rev_eval()

• FastTransformFFT1$calculate_rev_par()

• FastTransformFFT1$clone()

Method new(): Object creation function. It is recommended to call the fort() function with
type = "FastTransformFFT1", instead of this method, since no input validation is performed by
this method.

Usage:
FastTransformFFT1$new(dim_in, dim_out, blocksize)

Arguments:

dim_in Dimensionality of the input for the forward transform.
dim_out Dimensionality of the output for the forward transform.
blocksize Dimensionality of the internal transformation (must be a power of 2).

Returns: A matrix with the same number of columns as x.

Method fwd_eval(): Function that performs the forward transform. Do not call this directly un-
less you know what you are doing: use the %*%.FastTransform or FastTransform$evaluate()
methods instead.

Usage:
FastTransformFFT1$fwd_eval(x)

Arguments:

x Input matrix of the correct dimensionality

Returns: A matrix with the same number of columns as x.

Method rev_eval(): Function that performs the inverse transform. Do not call this directly un-
less you know what you are doing: use the %*%.FastTransform or FastTransform$evaluate()
methods instead.

Usage:

10 FastTransformFFT2

FastTransformFFT1$rev_eval(x)

Arguments:
x Input matrix of the correct dimensionality
Returns: A matrix with the same number of columns as x.

Method calculate_rev_par(): Function that calculates and caches the parameters for the
inverse transform. Do not call this directly unless you know what you are doing. If you need the
inverse transform, use the solve.FastTransform or FastTransform$get_inverse() methods
instead.

Usage:
FastTransformFFT1$calculate_rev_par()

Returns: The object itself (invisibly).

Method clone(): The objects of this class are cloneable with this method.
Usage:
FastTransformFFT1$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

fort(), FastTransform

FastTransformFFT2 FastTransformFFT2 subclass

Description

FastTransformFFT2 subclass

FastTransformFFT2 subclass

Details

A specific implementation of a structured fast transform. Inherits from FastTransform.

In particular, the fft2 type applies the following set of operations to each input (column) vector:

1. Permute/expand (P1) rows and pack them into a complex vector x;
2. Apply a y = D3FD2FD1x linear transform, where F represents a complex FFT, and Di

represent diagonal matrices of random unitary complex values;
3. Unpack complex vector y to real vector and permute/contract (P2) rows.

Note that this transform will be orthonormal only when dim_in = dim_out = blocksize (in which
case, both P1 and P2 are permutations).

Otherwise, when dim_in < blocksize, P1 represents an expansion (rather than a permutation), and
when dim_out < blocksize, P2 represents a contraction/decimation (rather than a permutation).
When both of these conditions are true, the resulting transform will not be exactly orthogonal or
semi-orthogonal, but the rows and columns of the transform are still going to be generally uncorre-
lated.

It is not recommended that the methods described below are called directly. Instead, use the meth-
ods described in the fort() documentation, if possible, unless you positively need low-level access
(e.g., to speed up computation on pre-validated inputs).

FastTransformFFT2 11

Super class

fort::FastTransform -> FastTransformFFT2

Methods

Public methods:
• FastTransformFFT2$new()

• FastTransformFFT2$fwd_eval()

• FastTransformFFT2$rev_eval()

• FastTransformFFT2$calculate_rev_par()

• FastTransformFFT2$clone()

Method new(): Object creation function. It is recommended to call the fort() function with
type = "FastTransformFFT2", instead of this method, since no input validation is performed by
this method.

Usage:
FastTransformFFT2$new(dim_in, dim_out, blocksize)

Arguments:
dim_in Dimensionality of the input for the forward transform.
dim_out Dimensionality of the output for the forward transform.
blocksize Dimensionality of the internal transformation (must be a power of 2).

Returns: A matrix with the same number of columns as x.

Method fwd_eval(): Function that performs the forward transform. Do not call this directly un-
less you know what you are doing: use the %*%.FastTransform or FastTransform$evaluate()
methods instead.

Usage:
FastTransformFFT2$fwd_eval(x)

Arguments:
x Input matrix of the correct dimensionality

Returns: A matrix with the same number of columns as x.

Method rev_eval(): Function that performs the inverse transform. Do not call this directly un-
less you know what you are doing: use the %*%.FastTransform or FastTransform$evaluate()
methods instead.

Usage:
FastTransformFFT2$rev_eval(x)

Arguments:
x Input matrix of the correct dimensionality

Returns: A matrix with the same number of columns as x.

Method calculate_rev_par(): Function that calculates and caches the parameters for the
inverse transform. Do not call this directly unless you know what you are doing. If you need the
inverse transform, use the solve.FastTransform or FastTransform$get_inverse() methods
instead.

Usage:
FastTransformFFT2$calculate_rev_par()

12 fort

Returns: The object itself (invisibly).

Method clone(): The objects of this class are cloneable with this method.

Usage:
FastTransformFFT2$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

fort(), FastTransform

fort Create a Fast Orthogonal Random Transform

Description

fort() creates an object (that inherits from class FastTransform) which represents a fast random
Rdim_in → Rdim_out linear transform. This transform will be orthonormal when dim_in =
dim_out and they are a power of 2, and approximately orthogonal or semi-orthogonal (in the sense
that either WTW ≈ Idim_in or WWT ≈ Idim_out, if W represents the transform and In represents
an N-dimensional identity matrix) otherwise.

Usage

fort(
dim_in,
dim_out = NULL,
type = "default",
cache_matrix = TRUE,
seed = NULL

)

Arguments

dim_in Either a scalar indicating the input dimensionality, or a vector of length 2 indi-
cating the input and output dimensionality of the transform (if dim_out is not
specified).

dim_out A scalar indicating the output dimensionality of the transform (not required if
the first parameter is a vector of length 2).

type A string indicating the type of transform to use (optional); current valid options
are: fft2 (i.e. default).

cache_matrix Logical that controls whether matrices are cached when as.matrix() is called;
should be set to FALSE if saving memory is important (optional, default =
TRUE).

seed If set, defines the seed used to generate the random transform (optional, default
= NULL).

fort 13

Details

The goal of fort() is to provide an easy and efficient way of calculating fast orthogonal random
transforms (when dim_in is the same as dim_out) or semi-orthogonal transforms (when dim_in is
different from dim_out) within R, by using fast structured transforms (like the Fast Fourier Trans-
form or the Fast Walsh-Hadamard Transform) to avoid matrix multiplications, in the same spirit as
the Fastfood (Rahimi et al. (2007)), ACDC (Moczulski et al. (2015)), HD (Yu et al. (2016)) and
SD (Choromanski et al. (2017)) families of random structured transforms.

Internally, all fort transforms assume a blocksize which must be a power of 2 and no smaller than
max(dim_in, dim_out). The resulting transform will be practically orthonormal when dim_in =
dim_out and they match the blocksize of the transform, and practically semi-orthogonal when
dim_in ̸= dim_out and max(dim_in, dim_out) matches the blocksize. Otherwise, these proper-
ties will only approximately hold, since the output will result from a decimated transform (i.e., the
rows and columns of the transform should be decorrelated, but not necessarily orthogonal).

Value

An object of a class that inherits from class FastTransform and which represents a fast linear trans-
form.

fort transform types

The specific type of transform returned depends on the value passed in the type parameter, but
all methods rely on alternating between applying permutations (complexity O(N)), diagonal scal-
ing matrices (complexity O(N)) and structured fast linear transforms (such as the Fast Fourier
Transform or the Fast Walsh-Hadamard Transform, which can be implemented with complexity
O(N logN)). Thus, it becomes possible to reduce the complexity of transforming an RN vector
from O(N2) (using matrix multiplication) to O(N logN).

Currently, the available options for the type parameter are:

• default: this is the default option, if no type is specified; currently, it assumes the fft2 type,
but this is subject to change (so avoid this option in non-interactive usage);

• fft1: this type of fort transform uses the Fast Fourier Transform as base transform (which
is used once); for more technical details, see FastTransformFFT1.

• fft2: this type of fort transform uses the Fast Fourier Transform as base transform (which
is used twice); for more technical details, see FastTransformFFT2.

Using fort transforms

In practice, to apply the fast transform to the columns of a matrix, you should use the %*% operator
as if the output of fort() was a matrix (e.g., fort(4,6) %*% matrix(1:12,4,3) will output a 6
by 3 matrix that results from applying the transform on the left to the matrix on the right of the %*%
operator).

Objects generated by fort() are also compatible with other methods applicable to matrix objects,
such as dim(), ncol(), nrow(), solve(), t() and det(). Furthermore, these object can also be
easily converted to matrices (using as.matrix()), if required.

References

Krzysztof M. Choromanski, Mark Rowland, and Adrian Weller. (2017). The unreasonable effec-
tiveness of structured random orthogonal embeddings. Conference and Workshop on Neural Infor-
mation Processing Systems. http://papers.neurips.cc/paper/6626-the-unreasonable-effectiveness-of-structured-random-orthogonal-embeddings

http://papers.neurips.cc/paper/6626-the-unreasonable-effectiveness-of-structured-random-orthogonal-embeddings

14 solve.FastTransform

Felix Xinnan X. Yu, Ananda Theertha Suresh, Krzysztof M. Choromanski, Daniel N. Holtmann-
Rice, and Sanjiv Kumar. (2016). Orthogonal random features. Conference and Workshop on Neural
Information Processing Systems. http://papers.neurips.cc/paper/6246-orthogonal-random-features

Marcin Moczulski, Misha Denil, Jeremy Appleyard, and Nando de Freitas. (2015). ACDC: A
structured efficient linear layer. https://arxiv.org/abs/1511.05946

Quoc Le, Tamás Sarlós and Alex Smola. (2013). Fastfood - approximating kernel expansions
in loglinear time. International Conference on Machine Learning. https://proceedings.mlr.
press/v28/le13-supp.pdf

See Also

• How to apply fort transforms: %*%.FastTransform

• How to obtain a fort transform in matrix form: as.matrix.FastTransform()

• How to invert fort transforms: solve.FastTransform()

• How to access low-level functionality of fort transforms: FastTransform

Examples

fort(16) # a random orthogonal transform from R^16 to R^16
fort(5, 33) # a random transform from R^5 to R^33
fort(c(5, 33)) # same as previous line
apply a random orthogonal transformation to the canonical R^4 basis
fort(4) %*% diag(4)

solve.FastTransform Solve a System of Equations

Description

Solves an equation of the form a %*% x = b for x, where a is a linear operation represented by a
FastTransform object, while b can be either a vector or a matrix. If b is missing, it returns a
FastTransform object corresponding to the inverse (or a generalized inverse) of a.

Usage

S3 method for class 'FastTransform'
solve(a, b, ...)

Arguments

a An object of class FastTransform, created using fort().

b A numeric vector or matrix (to solve the equation), or nothing (to obtain a gen-
eralized inverse of a).

... Extra parameters (ignored).

Details

Note that the inverse transform will only be fast (i.e., avoid matrix multiplication) if dim_in =
dim_out = blocksize.

http://papers.neurips.cc/paper/6246-orthogonal-random-features
https://arxiv.org/abs/1511.05946
https://proceedings.mlr.press/v28/le13-supp.pdf
https://proceedings.mlr.press/v28/le13-supp.pdf

summary.FastTransform 15

Value

Either a matrix (representing x), or a FastTransform object (representing a generalized inverse of
a; if parameter b is missing).

See Also

fort()

Examples

a <- fort(4)
inv_a <- solve(a) # inverse of a
inv_a %*% diag(4) # applying the inverse of a
solve(a, diag(4)) # should give the same output

summary.FastTransform Summarize fast transform

Description

Provides a summary of a fast transform created by fort() with slightly more detail than the infor-
mation provided by using print().

Usage

S3 method for class 'FastTransform'
summary(object, ...)

Arguments

object An object of class FastTransform, created using fort().

... Extra parameters (ignored).

Value

The input object (invisibly).

See Also

fort()

Examples

summary(fort(3, 17))

16 %*%.FastTransform

t.FastTransform Transform Transpose

Description

Given a FastTransform object x, t returns the transpose of x. If x represents an orthonormal
transformation (i.e., if x$invertible is TRUE), then a FastTransform object (representing the
transpose of x) will be returned; otherwise, a matrix object (representing the transpose of x) will be
returned, with a warning.

Usage

S3 method for class 'FastTransform'
t(x)

Arguments

x An object of class FastTransform, created using fort().

Value

Either an object of class FastTransform (if x$invertible is TRUE) or a matrix.

See Also

fort() and solve.FastTransform()

Examples

(a <- fort(4))
(b <- t(t(a))) # transpose a twice
the result below should be close to zero
sum((a %*% diag(4) - b %*% diag(4))^2)

%*%.FastTransform Apply a fast transform

Description

Applies a fast transform created by fort() (x) to the columns of a conformable matrix (y).

Usage

S3 method for class 'FastTransform'
x %*% y

Arguments

x An object of class FastTransform, created using fort().

y A numeric (real) matrix/vector with an appropriate number of rows/elements.

%***% 17

Value

A numeric (real) matrix with the same number of columns as y.

See Also

fort() to create FastTransform objects, and %***% for unsafe evaluation

Examples

Z <- fort(4, 1024)
Z %*% matrix(1:2, 4, 3) # output is a 1024 by 3 matrix
the example below works: y is assumed to be a single column vector
Z %*% 1:4 # output is a 1024 by 1 matrix

%***% Unsafely apply a fast transform

Description

Applies a fast transform created by fort() (x) to the columns of a conformable matrix (y), typically
equivalent to the use of the %*% operator, but using an unsafe method.

Usage

x %***% y

Arguments

x An object of class FastTransform, created using fort().

y A numeric (real) matrix/vector with an appropriate number of rows/elements.

Details

This operator works in a similar way to %*%, but avoids dispatching and does not perform any type
of validation of its inputs, in order to reduce overhead when performing repeated operations inside
a function on pre-validated inputs.

It is not recommended that this operator is used interactively and/or on non-validated inputs.

Value

A numeric (real) matrix with the same number of columns as y.

See Also

fort(), %*%.FastTransform

Examples

Z <- fort(4, 1024)
Z %*% matrix(1:2, 4, 3) # output is a 1024 by 3 matrix
Z %***% matrix(1:2, 4, 3) # output is also a 1024 by 3 matrix

Index

%***%, 17, 17
%*%.FastTransform, 4, 9, 11, 14, 16, 17

as.matrix.FastTransform, 2
as.matrix.FastTransform(), 14

determinant.FastTransform, 3
dim.FastTransform, 3

FastTransform, 4, 8, 10, 12–14
FastTransformFFT1, 4, 8, 8, 13
FastTransformFFT2, 4, 8, 10, 13
fort, 12
fort(), 2–4, 8–10, 12, 15–17
fort-package, 8
fort::FastTransform, 9, 11

solve.FastTransform, 4, 10, 11, 14
solve.FastTransform(), 14, 16
summary.FastTransform, 15

t.FastTransform, 16

18

	as.matrix.FastTransform
	determinant.FastTransform
	dim.FastTransform
	FastTransform
	FastTransformFFT1
	FastTransformFFT2
	fort
	solve.FastTransform
	summary.FastTransform
	t.FastTransform
	*.FastTransform

	Index

